Waste Management – SWM Rules, EWM Rules, etc

Microscopic Realm: Nanoplastics in Bottled Water


From UPSC perspective, the following things are important :

Prelims level: Nanoplastics in Water Bottles

Mains level: Health and ecological hazards of Nanoplastics


  • A recent study conducted by scientists at Columbia University sheds light on the pervasive presence of micro- and nano-plastics in bottled water, with nano-plastics comprising a staggering 90% of the detected particles.

What are Nanoplastics?

  • Definition: Nanoplastics, measured in billionths of a metre, are minuscule particles that evade detection by the naked eye, posing challenges for identification and quantification.
  • Comparative Analysis: Smaller than microplastics, nano-plastics exemplify dimensions that are 70 times smaller than the diameter of a human hair, rendering them inconspicuous yet ubiquitous.

Key Findings

  • Elevated Concentration: Bottled water contains approximately 2.4 lakh micro- and nano-plastic particles per litre, highlighting a significant underestimation of plastic concentration compared to previous assessments.
  • Dominance of Nanoplastics: Nano-sized particles, previously overlooked by conventional imaging techniques, emerge as the predominant component, constituting 90% of the total plastic population.
  • Complex Particle Dynamics: Analysis reveals a diverse array of plastic compositions, shapes, and sizes, elucidating the intricate interplay between different plastic types within the aquatic environment.

How were they assessed?

  • Challenges in Analysis: Nanoplastics pose analytical challenges due to their diminutive size and the limitations of existing diagnostic methods.
  • Innovative Approach: Researchers utilize a custom hyperspectral Stimulated Raman Scattering (SRS) imaging platform to overcome these challenges, enabling detailed molecular analysis at the single-particle level.
  • Raman Scattering Principle: SRS microscopy leverages the Raman Effect, allowing for the identification of plastic particles based on their unique spectral signatures.

What is Raman Effect?


  • Discovered by Sir C.V. Raman in 1928, it describes the scattering of light by molecules, resulting in a shift in wavelength due to energy exchange.
  • Raman Effect occurs spontaneously when light interacts with matter, causing a small fraction of light shift to longer or shorter wavelengths.
  • SRS is a controlled process where two laser beams with different frequencies interact with a material, amplifying the Raman signal.
  • Unlike the weak signal of the Raman Effect, SRS involves amplifying the Raman signal by the presence of pump and Stokes laser beams.
  • SRS find applications in various fields such as spectroscopy, microscopy, and chemical analysis, with SRS offering enhanced sensitivity and specificity due to its controlled nature.
  • India celebrates National Science Day on February 28 each year to mark the discovery of the Raman effect by Indian physicist Sir C. V. Raman on 28 February 1928


  • Environmental Significance: The study underscores the pervasive nature of plastic pollution, with microplastics infiltrating ecosystems worldwide, including bottled water sources.
  • Biological Impact: Sub-micrometre plastic particles pose potential health risks, as they can traverse biological barriers and accumulate within living organisms.
  • Technological Advancements: The adoption of advanced imaging technologies enhances our understanding of nanoplastic dynamics, facilitating more accurate assessments of plastic pollution levels.

Try this question from CSP 2017

Q.Which Indian astrophysicist and Nobel laureate predicted rapidly rotating stars emit polarized light?

(a) Subrahmanyan Chandrasekhar

(b) CV Raman

(c) Ramanujan

(d) Amartya Sen


Post your answers here.
Please leave a feedback on thisx

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

Notify of
Inline Feedbacks
View all comments


Join us across Social Media platforms.

💥Mentorship New Batch Launch
💥Mentorship New Batch Launch