Innovations in Sciences, IT, Computers, Robotics and Nanotechnology

The Curie Family and its Nobel legacy

Note4Students

From UPSC perspective, the following things are important :

Prelims level : Radioactivity

Mains level : NA

This newscard is inspired by an article published in the DTE which talks about a family which has received a total of four Nobel prizes, the highest won by a single-family.

Last year in 2019 CSP, there was a question on pure Biology about Hepatitis and its variants. With such news trending, we can expect a core chemistry or physics based question coupled with a slight Current Affairs blend.

The ‘Nobel’ family

  • On April 20, 1902, Marie and Pierre Curie successfully isolated radioactive radium salts from pitchblende, a mineral, in a laboratory in Paris, France.
  • They were inspired by French physicist Henri Becquerel’s 1896 experiment on phosphorescence or the phenomenon that allows certain objects to glow in the dark.
  • They were able to find traces of two radioactive elements—polonium (Element 84) and radium (Element 88).
  • Curie shared the 1903 Nobel with her fellow researcher Pierre Currie and Becquerel for their combined work on radioactivity.

Important facts

  • In 1903, Marie Curie received the Nobel Prize in Physics making her the world’s first woman to win the prize.
  • In 1911, she created history again by becoming the first woman to have won two Nobel awards.
  • The 1911 Nobel Prize in Chemistry was awarded to Marie after she managed to produce radium as a pure metal. This proved the new element’s existence beyond doubt.
  • However, this was not the last Nobel for the Curie family.
  • The 1935 Nobel in Chemistry went to Irène Curie and her husband and co-researcher Frédéric Joliot for their joint work on the artificial creation of new radioactive elements.
  • The Curies have received a total of four of Nobel prizes, the highest won by a single-family. They also have the unique distinction of having three Nobel-prize winning members in the family.

Birth of Radioactivity

  • While delivering a lecture at the Royal Academy of Sciences in Stockholm, Sweden in 1911, Curie shared some critical details about “radioactive elements” and the phenomenon called “radioactivity”.
  • She also spoke about the chemical properties of radium, the new element that was about a million times more radioactive than uranium.
  • Radium in solid salts was about 5 million times more radioactive than an equal weight of uranium.

Back2Basics: Radioactivity

  • Radioactivity refers to the particles which are emitted from nuclei as a result of nuclear instability.
  • It is the process by which an unstable atomic nucleus loses energy by radiation.
  • The most common types of radiation are called alpha, beta, and gamma radiation, but there are several other varieties of radioactive decay.
  • Radioactive decay rates are normally stated in terms of their half-lives, and the half-life of a given nuclear species is related to its radiation risk.
  • Examining the amounts of decay products makes possible radioactive dating.

Its applications

  • Medical use: Many diseases such as cancer are cured by radiotherapy. Sterilization of medical instruments and food is another common application of radiation.
  • Scientific use: Alpha particles emitted from the radioisotopes are used for nuclear reactions.
  • Industrial use: Radioisotopes are used as fuel for atomic energy reactors. Also used in Carbon dating.
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments