💥UPSC 2026, 2027 UAP Mentorship November Batch
December 2025
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
293031  

Pharma Sector – Drug Pricing, NPPA, FDC, Generics, etc.

The new action plan on AMR needs a shot in the arm

PYQ Relevance

[UPSC 2014] Can overuse and free availability of antibiotics without Doctor’s prescription, be contributors to the emergence of drug-resistant diseases in India? What are the available mechanisms for monitoring and control? Critically discuss the various issues involved.

Linkage: This PYQ directly mirrors the article’s focus on antibiotic misuse, OTC access, and weak regulatory control driving AMR. It lets you use NAP-AMR 2.0 to show gaps in surveillance, stewardship, and One Health governance, exactly what the exam tests.

Mentor’s Comment

AMR is now a major threat to India’s health, food systems, and environment. Resistance has moved beyond hospitals into water, soil, and livestock. NAP-AMR 2.0 is timely and shows a stronger, more accountable approach. This analysis helps you clearly understand what worked, what failed, and what must change.It also builds GS2 and GS3 depth through governance, science, environment, and One Health linkages.

Introduction

India has released its National Action Plan on Antimicrobial Resistance (NAP-AMR 2.0) for 2025-29, signalling a renewed commitment to containing AMR, a challenge that affects human health, livestock, agriculture, the environment, and food systems. Unlike the first plan (2017), which saw uneven adoption across States, the second plan attempts structural reform through higher accountability, stronger surveillance, private-sector engagement, multi-departmental integration and One Health alignment.

Why in the news?

The launch of NAP-AMR 2.0 marks a significant turning point because AMR has now expanded beyond hospitals into soil, water, livestock, markets and food systems, making it a full-spectrum health and environmental challenge. 

How did the first NAP-AMR evolve and where did it fall short?

  1. Significant early progress: Brought AMR into national consciousness, encouraged multi-sectoral participation, improved laboratory networks, and strengthened stewardship.
  2. One Health recognition: Placed AMR within the interface of human health, animals and environment.
  3. State-level stagnation: Most States undertook only individual activities; only a few (Kerala, MP, Delhi, AP, Gujarat, Sikkim, Punjab) created formal AMR action plans.
  4. Weak institutional execution: Multisectoral One Health structures were missing in most States.
  5. Uneven governance: Human health, veterinary systems, pharmaceuticals and waste management lie under different jurisdictions, causing weak coordination.
  6. Monitoring deficiencies: Surveillance, regulatory oversight, environmental contamination monitoring and antibiotic stewardship remained fragmented.

What makes NAP-AMR 2.0 more mature and implementation-focused?

  1. Shift to national priorities: Moves beyond intent; outlines clear responsibilities across levels of governance.
  2. Private sector engagement: Recognises that a major share of India’s health care and veterinary services is provided privately.
  3. Scientific strategy: Emphasises innovation, rapid diagnostics, alternatives to antibiotics, and improved environmental monitoring.
  4. One Health deepening: Stronger coordination across food safety, waste management, agriculture, environment and human/animal health.

What new governance mechanisms does the NAP-AMR 2.0 introduce?

  1. Higher accountability: Greater role for national supervision through a dedicated Coordination and Monitoring Committee.
  2. State-level innovation: Recommends every State establish a One Health inter-ministerial AMR committee, along with State AMR cells.
  3. Integrated reporting framework: Aligns State reporting with national structures for uniform monitoring.
  4. Technical backbone: Calls for a national follow-up mechanism and a multi-departmental coordinating structure.

Where do administrative and operational gaps persist?

  1. Funding limitations: NITI Aayog’s earlier financial grant-based system did not generate adequate incentives.
  2. Weak incentive design: No system for rewarding State performance or penalising poor progress.
  3. Fragmented responsibility: Human health, veterinary systems, agriculture, pharmaceuticals and waste sectors work under separate ministries and State departments.
  4. Lack of real-time accountability: No statutory notification requiring States to inform the Centre of AMR progress.
  5. Dependence on central push: States often wait for Union-level initiatives rather than proactively building AMR infrastructure.

What financial and institutional reforms does the article highlight as essential?

  1. Mandatory funding channels: Conditional grants through the National Health Mission (NHM) for surveillance and laboratory systems.
  2. Administrative energy: Once funding becomes compulsory, States respond faster.
  3. Scientific backbone: Need for a sustainable, long-term national centre for AMR control and accountability.
  4. International relevance: Without a Centre-backed national AMR programme, India cannot engage in meaningful global AMR governance.

Conclusion

The NAP-AMR 2.0 offers an opportunity to anchor India’s AMR response on a stronger scientific and institutional foundation. But success will require coordinated State participation, financial backing, and accountable governance, not just policy intention. A central AMR Centre, integrated surveillance, and enforceable incentives could finally convert national plans into ground-level action across health systems, veterinary services, agriculture, food safety and environmental management.

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

Air Pollution

Why pollution affects north Indian cities more than south and west

Introduction

Over 2015-2025, no northern Indian city recorded “safe” air quality even once, with Delhi emerging as the most polluted city. In contrast, cities in the south and west maintained comparatively better AQI levels. This consistent divergence reflects entrenched geographical, meteorological, and structural constraints that trap pollutants in the Indo-Gangetic Plain while aiding dispersion along the coasts.

Why in the news

A new assessment titled Air Quality Assessment of Major Indian Cities (2015-2025) reported that Delhi continues to be the most polluted city, with AQI stagnating at unhealthy levels. The study shows sharp regional contrasts, revealing that only southern and western cities showed sustained air quality improvements, making this a significant environmental governance concern.

Persistent Regional Air Quality Divide

Why northern cities remain severely polluted

  1. Consistent high pollution: Northern cities experienced prolonged severe pollution episodes across the decade.
  2. Limited “healthy days”: None recorded AQI within safe thresholds in 2025.
  3. Stagnant improvement: Even when AQI dipped (e.g., 2019), levels remained far above healthy limits.

How southern and western cities compare

  1. Cleaner AQI bands: Chennai, Chandigarh, Visakhapatnam, and Mumbai maintained AQI between 80-140.
  2. Steady progress: These cities displayed clear improvements between 2015-2025.
  3. Best performer: Bengaluru recorded the best AQI among all 11 cities.

Why Delhi Emerges as the Worst Performer

Data trends

  1. Peak AQI: Delhi saw its worst AQI in 2016 (over 250).
  2. Temporary dips: AQI improved in 2019 but did not meet healthy standards.
  3. Current status: AQI stagnated at 180.5 in 2025, indicating persistent failure to achieve safe limits.

Structural challenges

  1. Urban surface roughness: Dense built-up surfaces inhibit wind flows and pollutant dispersion.
  2. Trapping effect: Reduced ventilation leads to prolonged retention of pollutants.

Why Secondary Northern Cities Remain Highly Polluted

Cities in focus: Lucknow, Varanasi, Ahmedabad, and Pune showed:

  1. Prolonged elevated AQI: Frequent high pollution days with slow improvement.
  2. Mixed progress: Improvements after 2019, but still above healthy limits.
  3. Heavy pollutant load: Emissions + weak dispersion exacerbate poor quality.

Why Southern & Western Cities Perform Better

  1. Favourable winds: Sea breezes in coastal cities aid pollutant dispersal.
  2. Better atmospheric ventilation: Stronger monsoon winds and less winter stagnation.
  3. Urban characteristics: Less surface roughness compared to Delhi’s dense built-up terrain.

Outcome

  1. Improved AQI stability
  2. Lower incidence of sharp pollution spikes

Geography and Winter Inversion: The Deciding Factors

Geographical lock-in

  1. Indo-Gangetic Basin: Landlocked region bounded by the Himalayas prevents outflow of pollutants.
  2. Pollutant entrapment: Cold northern boundary and flat terrain acts like a “pollution bowl”.

Winter inversion

  1. Temperature inversion effect: Warm air traps cold, dense air near the surface and this leads to pollutants settling close to ground level.
  2. Seasonal peak: December-February shows intensified pollution due to reduced boundary layer height.

Built environment factor

  1. Surface roughness: Urban canyons in Delhi slow wind speed, increasing stagnation.

Seasonal Wind Patterns and Air Dispersion

Why southern/western cities improve during monsoon

  1. Strong monsoon flows disperse pollutants effectively.
  2. Regular ventilation cycles prevent accumulation.

Why northern cities worsen in winter

  1. Weak westerly winds
  2. Lower atmospheric mixing height
  3. Persistent fog, cold air trapping, and stagnation

Conclusion

The decade-long air quality analysis underscores a structural, region-specific pollution challenge rooted in geography, climate, and urban form. Northern cities, especially those in the Indo-Gangetic Basin, remain trapped in severe winter pollution cycles, while southern and western cities benefit from favourable winds and dispersion conditions. Any meaningful pollution mitigation strategy must therefore be region-sensitive and climatologically informed.

PYQ Relevance

[UPSC 2021] Describe the key points of the revised Global Air Quality Guidelines (AQGs) released by the World Health Organisation (WHO). How are these different from its last update in 2005? What changes in India’s National Clean Air Programme are required to achieve these revised standards?

Linkage: This topic is important for UPSC as it highlights India’s deep regional air-quality disparities and the structural limits of current pollution-control policies. It links directly to GS-3 themes of air pollution, WHO AQGs, NCAP reforms, and the recurring winter inversion-driven smog episodes in north Indian cities.

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

Promoting Science and Technology – Missions,Policies & Schemes

Why does India need bioremidiation

Introduction

Bioremediation uses microorganisms such as bacteria, fungi, algae, and plants to break down toxic pollutants like pesticides, plastics, heavy metals, and industrial chemicals into harmless by-products. With India experiencing severe air, water, and soil contamination, bioremediation provides a scalable and sustainable pathway to clean ecosystems. At the same time it will  generate opportunities in biotechnology and environmental consulting.

What Is Driving India Toward Bioremediation?

  1. Rapid industrialisation: Intensifies contamination of air, water, and land, increasing demand for cost-effective clean-up solutions.
  2. High pollution load: Rivers continue to receive sewage and industrial effluents daily, causing persistent ecological and health risks.
  3. Limitations of traditional clean-up: Conventional methods are expensive, energy-intensive, and often shift pollutants to secondary waste streams.
  4. Biological advantage: Indigenous and extremophile microbes adapted to local temperatures, salinity, and soil conditions perform better than imported strains.

How Do Different Types of Bioremediation Work?

  1. In situ bioremediation: Direct treatment at the contaminated site (e.g., bacteria sprayed on oil spills or contaminated soil treated on location).
  2. Ex situ bioremediation: Removal and controlled treatment of polluted soil or water in bioreactors or treatment facilities before returning it.
  3. Combination with biotechnology: Genetically modified microbes designed to degrade complex pollutants like plastics or toxins offer enhanced efficiency.

How Is India Using Bioremediation Today?

  1. Government-supported pilot projects: DBT supports several programmes through its Clean Technology Programme, linking universities, research institutions, and industries.
  2. CSIR-National Environmental Engineering Research Institute initiatives: Mandate to develop and implement bioremediation solutions; contributes to policymaking.
  3. Indian Institute of Technology experiments: Development of microbial synthesised compounds to mop up oil spills and identify bacteria suitable for soil restoration.
  4. Emerging startups: Firms like Biotech Consortium India Limited (BCIL) and Ecominr India offer soil and water microbial solutions.

What Are Other Countries Doing?

  1. Japan: Integrates microbial and plant-based systems into municipal solid waste strategy.
  2. European Union: Funds cross-country projects to remove toxins, clean up oil spills, and restore mining sites.
  3. China: Makes bioremediation a priority under soil pollution control frameworks and uses genetically improved bacteria for industrial waste.

What Are the Risks and Challenges?

  1. Environmental risks: Introduction of genetically modified organisms must be strictly monitored to prevent unintended ecological effects.
  2. Lack of unified standards: Absence of national bioremediation protocols, biosafety guidelines, certification systems.
  3. Knowledge and skill gaps: Limited trained personnel, weak microbial testing frameworks, and poor site assessment capacity.
  4. Public scepticism: Low awareness about microbes as environmental allies may slow adoption.

What Should India Do Next?

  1. Standard-development: Develop national protocols for microbial applications and bioremediation safety.
  2. Regional bioremediation hubs: Link universities, startups, and industries for field testing and faster scale-up.
  3. Government integration: Align bioremediation with Namami Gange, Swachh Bharat Mission, and industrial clean-up mandates.
  4. Public engagement: Raise awareness about biological solutions to restore trust in microbial technologies.

Conclusion

Bioremediation presents India with a scalable, sustainable, and scientifically grounded pathway to address its massive environmental burdens. While global examples offer templates for success, India must create strong regulatory frameworks, biosafety standards, and capacity-building ecosystems. Integrating microbes with national missions and industrial compliances can transform bioremediation from pilot projects into mainstream environmental governance.

PYQ Relevance

[UPSC 2018] What are the impediments in disposing of the huge quantities of discarded solid wastes which are continuously being generated? How do we remove safely the toxic wastes that have been accumulating in our habitable environment?

Linkage: This PYQ is highly relevant as it falls under GS3 pollution, waste management, and sustainable clean-up. The article links directly by showing how microbial systems overcome traditional waste-disposal barriers and safely break down toxic, accumulated solid waste.

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

New Species of Plants and Animals Discovered

Svalbard

 Why in the News?

  • Scientists recently observed an unexpected large gathering of walruses on the remote shores of Svalbard, indicating shifting wildlife behaviour in the Arctic due to changing climatic conditions.

About Svalbard 

Location

  • A Norwegian archipelago in the Arctic Ocean.
  • Lies between mainland Norway and the North Pole (about halfway).
  • Northernmost permanent human settlement in the world.

Discovery & Status

  • Discovered by Willem Barentsz (Dutch explorer) in 1596.
  • Svalbard Treaty (1920) → established Norwegian sovereignty.

Geography

  • ~60% glacier-covered; marked by mountains, fjords.
  • Surrounding seas:
    • Arctic Ocean, Greenland Sea, Norwegian Sea.
Consider the following countries: (2014)

1. Denmark 

2. Japan 

3. Russian Federation 

4. United Kingdom 

5. United States of America 

Which of the above are the members of the ‘Arctic Council’? 

(a) 1, 2 and 3 only (b) 2, 3 and 4 only (c) 1, 4 and 5 only (d) 1, 3 and 5 only

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

Tribes in News

Khiamniungan Tribe

Why in the News?

  • The Prime Minister of India recently mentioned the Khiamniungan tribe of Nagaland in his Mann Ki Baat episode, highlighting their traditional practice of cliff-honey hunting and rich cultural heritage.

About the Khiamniungan Tribe

  • One of the major Naga tribes inhabiting both:
    • Eastern Nagaland (India)
    • North-Western Myanmar
  • Their homeland lies along the Indo-Myanmar border.
  • The term “Khiamniungan” means “source of great water/river”.
  • Language: Khiamniugan, a Sino-Tibetan Naga language.
  • Social Structure: Traditionally based on a clan system.

Festivals

  • Tsokum Sumai: Celebrated in September–early October.
    • Purpose: Invoke blessings for a rich harvest.
  • Khaotzao Sey Hok-ah Sumai: Marks the end of agricultural activities for the year.

Economy & Livelihood

  • Agriculture is the primary occupation.
  • Traditionally practiced jhum cultivation.
  • Renowned for cliff-honey hunting, practiced for centuries.
Consider the following pairs: Tribe State (2013)

(1). Limboo (Limbu) : Sikkim 

(2). Karbi : Himachal Pradesh 

(3). Dongaria Kondh : Odisha 

(4). Bonda : Tamil Nadu 

Which of the above pairs are correctly matched? 

(a) 1 and 3 only 

(b) 2 and 4 only 

(c) 1, 3 and 4 only 

(d) 1, 2, 3 and 4

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

Ramban Sulai Honey Gets National Spotlight 

Why in the News?

In the 128th episode of ‘Mann Ki Baat’, the Prime Minister highlighted Ramban Sulai Honey from Jammu & Kashmir, noting that the product has gained national recognition after receiving a Geographical Indication (GI) tag in 2021.

Origin

  • Produced in Ramban District, Jammu & Kashmir.
  • Derived from Sulai (wild basil) plants growing naturally in the Himalayan region.

Distinct Features

  • Taste & Aroma: Naturally sweet with aromatic floral undertones.
  • Colour: Crystal-clear; ranges from white to amber.
  • Season of Production: Bees forage on snow-white Sulai blossoms from August to October.
  • Nutritional Profile: Rich in enzymes, vitamins, and essential minerals.
  • Medicinal Value: Known for high purity and therapeutic benefits.
  • Superior bee strains native to the region.
  • Ideal climatic conditions, giving higher yields than other honey-producing areas of India.
  • Recognised as the district’s One District, One Product (ODOP).

What is a Geographical Indication (GI) Tag?

A Geographical Indication (GI) is a sign used on products that: Originate from a specific geographical region, and Possess qualities, reputation, or characteristics exclusive to that region.

Key Points

  • GI is a type of Intellectual Property Rights (IPR).
  • Recognized under: Paris Convention and TRIPS Agreement (WTO)

Indian Legal Framework

  • Governed by the Geographical Indications of Goods (Registration and Protection) Act, 1999.
  • Key provisions:
    • Prevents unauthorized use of GI-tagged names.
    • Valid for 10 years, but can be renewed indefinitely.
    • Provides legal protection and helps preserve traditional knowledge.
India enacted the Geographical Indications of Goods (Registration and Protection) Act, 1999 in order to comply with the obligations to (2018)

(a) ILO 

(b) IMF 

(c) UNCTAD 

(d) WTO

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

New Species of Plants and Animals Discovered

New Species of ‘Shadow’ Damselfly Discovered in Kodagu’s Western Ghats 

Why in the News?

A new damselfly species, Protosticta sooryaprakashi, commonly called the Kodagu Shadowdamsel, has been discovered in the Western Ghats, Karnataka. The finding underscores the rich but still understudied biodiversity of the region.

Species Details

  • Common Name: Kodagu Shadowdamsel
  • Scientific Name: Protosticta sooryaprakashi
  • Family: Platystictidae (Shadowdamsels)

Discovery Location

  • Found along the Sampaje River banks (Kodagu District)
  • Also observed in Agumbe high-altitude forests
  • Habitat: Shaded, riparian vegetation in the Western Ghats

Distinctive Features

  • Males show a sky-blue marking on the prothorax (behind the head).
  • Body: Dark brown to black, unlike the crimson thorax of the related Protosticta sanguinostigma.
  • Unique genital ligula: Tip shaped like a duck’s head (important taxonomic marker).
  • Smaller, more delicate, with weak fluttering flight.
In which of the following states is the lion-tailed macaque found in its natural habitat? (2013)

1. Tamil Nadu 

2. Kerala 

3. Karnataka 

4. Andhra Pradesh 

Select the correct answer using the codes given below. 

(a) 1, 2 and 3 only (b) 2 only (c) 1, 3 and 4 only (d) 1, 2, and 3

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

Attend Now

JOIN THE COMMUNITY

Join us across Social Media platforms.